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Variational data assimilation problems for general ocean circulation models
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Theoretical background of the study

Mathematical models and complex system theory
Optimal control theory

Operator theory and boundary value problems theory
Iterative algorithms theory

Adjoint equation theory

Modern numerical algorithms
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1. Mathematical model of the ocean hydrother modynamics

- N

di | 0 - .o h
kel — / i@ —g-gradé + Ayl + (Ap)*d = f — —gradP, — igrad/pl (T, S)dz'
dt f 0 PO PO )

0 0 7 0 i

_5 —m— /@ Judz) — /@ —vdz = fs,

ot 8:6 8y

0 0
dT ds

Y AT =, 24 AgS = s,
dt‘|‘T fr dt+S Is

where @ = (u,v) and f = g - gradG, @(z)ELFf), r=R—2z2 0<z< Hx=M\y=

O,n=1/r, m=1/(rcos@). The functions G, f3,&y = £ at t = 0 will be "additional
unknowns which must be calculated too.
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Boundary conditionson the" seasurface'I's =) at z = 0:

( H
(/ @ﬁdz) n + Bomop/ 9H & = mop+/gH ds on 052,

0
Uqg_)u V% — kgg—Aku = T, )/p 0, U( )v — V@ — l<:33—Akv =Ty )/,00,
0z 0z

Aku = O, Akv - 0,

_ oT _
Ué )7 — VT@ +y7 (T —Ty) = Qr + U7(1 )dT7

oS

\ U 'S —vs 5~ +75(S = Sa) = Qs + Un ds,

where

Un

=U-N,U = (u,v,w) = (@,w), N = (n1,n2,n3) = (71,n3), U\, ) = (|Un| — Un)/2.

The boundary function dr, dg or QT, Qs can be unknown also.
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With the function ¢ = (u,v,&,T,S) known, we calculate

H H
1 0 0
’lU(Cl?,y,Z,t) — ;(ma_w(/ TUdZ/) +ma_y(% rvdz’)), (CU,y,t) SROBS (07 E)a

z

P(z,y,2,t) = Pa(x,y,t) + pog(z — &) + /gm(T, S)dz".
0

Note, that for U, = U - N (here U = (u,v,w)) we always have

Un — O on Fc,w U FH.
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2. Approximation by splitting method

General theory of splitting methods: G.I. Marchuk , N.N. Yanenko, A.A.
Samarsky.

Splitting method in data assimilation: Marchuk G.I., Zalesny V.B. (1993), M.
Wenzel, V.B. Zalesny (1996), V.B. Zalesny (2005).

Studies of inverse and assimilation problems for semidiscrete models in the ocean
dynamics: Agoshkov V.I. (2005-2008).

Studies of class of inverse and data assimilation problems for ocean dynamics
models obtained by splitting method: Agoshkov V.I. (2005, 2006), Zalesny V.B.
(2008, 2010), Agoshkov V.I., Parmuzin E.I., Zakharova N.B. (2010).
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Problem |

Step 1. We consider the system:

;

\

where I'yy, = T'y,e UL'w,0p - the "vertical lateral boundary”, I'yy - "the ocean bottom”.

o

T + (U, Grad)T — DiV(dT - Grad T) = frin D X (tj—latj),

T'=1T,_1 for t = tj—1 In D,

_(_ oT _(_
Uqg )T — VT@ -|—’YT(T - Ta) = Qr + Uqg )dT on I'g X (tj—latj)a
oT

E =0 on ijc X (tj_l,tj),

_(_ oT _(_

ONT

oT
E =0on Iy X (tj_l,tj),

T; =T on D X (tj—latj)7
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We consider the subproblem for 7' in the operator form as

(T)t + LT =F+ BQ, te€ (tj_l,tj),
T:Tj_l, 73=1,2,...,J,

and introduce the additional approximation by the splitting methods:

Step 1.1:
(T1)t + L1T1 = F1, teE(tj—1,t5),

Ihn=T,_1 at t=1;_1
Step 1.2:
(T2)t + LoTo = F2 + BQ, te (tj—1,t;),
Ta(tj—1) = T1(ty).

Tg(tj) = Tj &7T at t= ty.
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The classical form of the subproblem for T = T is given by:

( 1 or 1 0(r?usT) 1 0 5, 90T
Ty + - = = = = frinD at t € (tj_1,t:),
t+2<w182+r2 0z 2oz Tz Jr in (tj-1,%5)
T:Tl(tj) at t =151,
) oT
—vr— =Q at z =0,
0z
oT
X I/TE:O at Z:H,
where

_(_ Un| —U 1 1
0 = 20 2 w0 = () m) a2 =0,

Q=Qr — (T —Ta) = U T+ 0TS dr.
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Step 2.

St + (U, Grad)S — Div(ag - Grad S) = fg in D X (tj_l,tj),

S=5j_1att=1t;_1in D,

_ oS _(_
U 'S —vs5~ +75(5 = Sa) = Qs + Uy ds on T's x (tj-1,1;).
oS
m =0 on Fw,c X (tj_l,tj),
_ oS —(—
qu )S—|— — = Ué )dS + Qs on I‘w,op X (tj—17tj)7
ONg
oS
m =0on Iy X (tj—latj),

S; =S onD X (tj_l,tj).
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We rewrite the subproblem for S in the operator form as

(S)t + LS =F+ BQ, te (tj_l,tj),
S=85j_1, 7=12,...,J,

and introduce the additional approximation by the splitting methods:

Step 1.1:
(S1)t + L1S1 = F1, te(tj—1,t;5),

S1=85j-1 at t=t;_1

Step 1.2:
(S2)t + L2S2 = Fo+ BQ, te(tj—1,t5),

Sa(tj—1) = S1(t;).

SQ(tj)ESng at t =1;.
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The classical form of the subproblem for S2 = S is given by:

( 1 oS 1 8(7"211)15)) 1 0 5 O0S ,
S+ = (w1 — + = - P2 = D at t e (tj_1,t;),
t+2(w18z+r2 0z r28zrysaz Js in at t € (tj-1,1))
S=051(t;) at t=t;_1,
) 0S
—vg— =@ at z =0,
0z
\ ng—izo at z = H,
where

__ Un| —U 1 1
0 = 20 2 w0 = () m) a2 =0,

Q=Qs—5(S—8a)—U)S+ TS dsg.
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Step 3: The subproblems for the velocity components

Step 3.1

0 —/
¢ 0
in D X (tj_l,tj),

H
) & — div <f @g(l)dz> = f31in Q x (t;_1,t;),
0

ugt) + u!) —g-gradf = g - gradG — —Lgrad (Pa +9 [ (T, S)dZ’>
0

ult) = Uj_1, E=§&j—1at t =151,
H
Ik @g(l)dz> -n+ BomopVgHE = mopv/gHds on 00 X (tj_1,t;),
0

ulV = uM(t;) in D

\

If we write down u(}) in the following form: u(}) = Q(l)()\, 0,t) +u (N, 0,z,t) where

1 H H
v = —/ OuVdz, Hy :/ Odz,
Hi Jo 0

then Step 3.1 is reduced to two subproblems for the functions U (1),g’1 :
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Step 3.1

First of them is "The ocean tide theory problem":

e

—L
14 0
4 &t — diV(ng(l)) = f3 in QX (tj_l,tj)
UM (tj-1) = 77 Jo? Ouj_ydz,  &(tj—1) =&-1 in Q

le)—k Q(l)—ggradfzggradG—l in DX (tj—1,t;)

| (H1UW) -+ BomopVgHE = mop\/gHds

where

1 1 2 _
I =(Iy,1Ip) (gradPa—l—g?/ @dz/ grad p1 (T, S)dz’).
1J0 0

~ po

The study and solution of this subproblem and its adjoint problem have the crusial
meaning for one of the inverse and data assimilation problems studied.

o |
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The second subproblem is :

0 —/ _
(ul)e + P uf = % (Hil fOH Odz [ grad p1 (T, S)dz’

< —/OZ grad p1 (T, S)dz’)

/ 1 [H
Ql(tj—l) =U; 1~ E/() @”LLj_le

HUBII MI'Y, Mocksa, 28 anpeas 2011
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Step 3.2

—f1(u)
0

g(2) =0in D x (tj_l,tj),
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Step 3.3

(3) + (U, Grad)u® — Div(a, - Grad )u® + (A3)%u®) =0in D x (t;_1,t;),
g(3) = Q(Q) at t =t;_1 in D,

7(a)
PO

Oy u® — vy %(3 — kas L (Agu®)) =

(tj—1,tj),

\
O (OB . N + 65\; LN+ ( ~Apu®) - N = U5 d, Agu® = 00n Turop X (-1, 1),
O (0® 7))+ 952 7+ (55 Aku®) 1, = 0, 44u® =0 on Tuop X (851,15),
W3 ()
v = o o0 Do x (o)
\
where

u® = (@3, ), 7@ = (7@ (o))
UB) = (u®, w @B @), TG = @w®),0), +® =+ éb)),

CU
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3. Inverse and variational data assimilation problems, |

et us assume, that the unique function which is obtained by observation data
|—Erocessing is the function &, on Q =QUON at t € (tj—1,t;),j=1,2,...,J. Let by —‘
physical meaning this function is an approximation to sea level function £ on (2, i.e on
the boundary, when z = 0. We permit that the function £, is known only on the part
of 2 x (0,t) and we define a support of this function as mg. Beyond of this area we
suppose function &, is trivial.

Let the functions G, f3,&p are "additional unknown functions” and we state the
following inverse problem - Problem Inv 1: find the solution ¢ = (u,v,&,T,S) of the
Problem 1 and functions G, f3,&o, such that, mo(§ — &ops) = 0.

To study this inverse problem we apply general methodology for solving data
assimilation problems (Agoshkov V., 2003) and classical results of the inverse problem
theory (A.N. Tikhonov, M.M. Lavrentiev, V.K. Ivanov, V.V. Vasin, V.G. Romanov,
M.V. Klibanov,Yu.E. Anikonov,S.I. Kabanikhin, A.Hasanov, V.G. Yakhno).

o |
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Variational approach for solving the inver se problem

Introduce the cost functional &, of the form:

Sa =alto, G f3, @) = oot e~ s - f:i“)\ Lo 0o e0)
a6 HG G(O)‘ L3(0,5L2(g52) p+s ; / s
where .
%0(@) = %o(f) = l ||m0(£ - fobs)H%Q(O,E;LQ(g;Q))
S = {O‘OAt Hgo B (0)| La(gsy Hf3 B O)‘ Ly (g;) (t)

tag HG G(O)‘

() + M0 (€ = Eobs) 13, g0y () }-

L2(g;92)

Here o = (o, af,ag), ap > 0, ay > 0, ag > 0 are regularization parameters that may
be dimensional values. Furthermore, it is possible to specify a ¢, ag depending on

ag > 0, (for instance, ag = ap, oy = apt?, etc.).

We can formulate the data assimilation problem - Problem A 1: find the solution ¢
of the Problem 1 and function G, f3, &0, such that, the cost functional is minimal on the

set of the solutions.
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Let us consider the problem on the first time step (tg,t1). Then the optimality

conditions are:

( tiao(€o —€9) + &% (k) =0 in O
ap(fs — 7)) +€ =0 inQx(to,t1)

_/\

\

H
ag(G — G(O)) —div(/ @gi‘dz) =0 in Q X (to,t1),
0

where £*,u] are the solution of the adjoint problem:

. 0O -/ y 5 .
—(uy)t — PR uy +ggrad§™ =0 in D X (to,t1)

H
< —&; —I—div(/o @gi‘dz) =mo(§ — &bs) In Q X (to,t1)

H
—(/ @gfdz) -1+ Bomop/gHE =0  on 9N X (to,t1)
0

£ =0, uf =0 att=t

\

uor here £* = mo(§ — &ops)(t1) at t =t71).
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Definition : Problem Inv 1 is densely solvable if for any ¢ > 0 there is a solution ¢ of
the Problem I such that $g(¢) < e.

Proposition 1. If supp(&ohs) = Q X [to, t1] and (G, f3)L5(g:0) = 0 Vi then Problem
Inv1 is uniquely and densely solvable. The solution of Problem Al can be taken as an

approximate solution of Problem Inv1 for sufficiently small «.

Proposition 2. If mes(0Q2N Ty, 0p) > 0 and the function G is sought additionally only
then Problem Inv 1 is densely solvable.

Proposition 3. If mes(supp(&,bs)) > 0 and the function f3 is sought additionally only
then Problem Inv 1 is densely solvable.

o |
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Iterative process

L

or numerical implementation of the algorithm of solving the whole problem in (tg, t1)

-

it is sufficient to solve two initial-boundary problems for parabolic equations (after that
T and S will be defined in D X (tgp,%t1)) and carry out Step 3 including the data
assimilation block. A numerical solution of the problem at Step 3 can be obtained by

the following iterative algorithm: if fék), G(k),ﬁék) are defined, we solve the
subproblems from the Step 3 for £y = §ék), J3 = fék), G = G(F) and then solve adjoint
problem and compute the new approximation f§k+1) , G(k+1)7§ék+1).

Y =M — (ol - €0) +e7 () i Q
S = B — a5V - B+ € inQx (o, 1)
Gk+1) — (k) _ Vi (ag(G(k) — G(O)) _ div(fOH @u*{dz))
in Q x (to,t1)

provided that / cigo =0 vi
Q

2\

\
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In the case of an appropriate selection of parameters {~v;} the iterative process
converges. In virtue of the compact solvability property, the following values can be

assumed an efficient choice of ~y:

/ / mo(E®) — €ops) dQ2dt
(/ (£*(to)) dQ+/t:1/ det+/t:1/ d1v/ g’{(’“)@dzfdadt).

After the criterion of stopping the iteration process is satisfied, it is necessary to used
the computed f§k+1), G(k+1),§ék+1) to solve other subproblems from the Step 3 and to
obtain an approximate solution to the whole problem in D X (tg,t1).

Tk =

After solving all problems and implementing the iteration process in (tg,t1), the
variation assimilation problem is solved similarly in the subsequent intervals
(tj—1,t5),7 =2,3,.... In view of the established properties of unique and
dense solvability of the considered Problem Inv and data assimilation
problem in each time interval, we can state that the system of all
approximate solutions {¢;} imparts the minimal value of whole cost
functional, i.e., is the solution to the considered problem for the whole

_nterval (0,t). J
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4. Inverse and variational data assimilation problems, 1|

f Problem Inv 2 —‘
Assume that the sea surface temperature (SST), observed on a subset Q) of €, is

denoted by T,ps = Tégz when t € (t;-1,t;), méj) is the characteristic function of this

subset (7 = 1,2, ..., J). Considering the boundary condition for T" at z = 0 we write it in

the following form:

T .
_VTZ—Z =Qatz=0on Q) % (tj—latj)a

_(_ T _(_ .
Ué )T—VT(;— —I—"}/T(T—Ta):QT—FU?S )dT at z =0 on (Q\Q(J)) X (tj—latj)7
z

where the function Q = QU)(j =1,2,...,J).
Let the functions Q) are "additional unknown functions” and we state the following
inverse problem - Problem Inv 2: find the solution ¢ = (u,v,&,T,S) of the Problem

I and functions QYY) | such that, méj)(T — To(gg) =0onQ,j=1,2,...,J.

o |
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Variational approach for solving the inver se problem

o of the form:

Introduce the cost functional

St~ @

1
o =3a(Q,®) = 5 /Q|Q—Q(0)|2d9dt+do Z / s dt,
1
where & 7= ti—1
. t
30(®) = S0(Q) = / / mo|T — Tops|2d2lt,
0 Qp(t)
tj tj
N 1
%&”:5/ /a|Q—Q(O)|2det—|—§/ / m{ | T — T |2dqadt.
ti—1 Q@) tji—1 Q)

Here o > 0, is a "regularization"or "penalty"function ,that may be constant.
Data assimilation problem - Problem A 2: find the solution ¢ of the Problem I and

functions {Q(j)}, such that, the cost functional is minimal on the set of the solutions.

o |
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The optimality system obtained consist of successive solving the variational assimilation
F)roblem on intervals t € (t;-1,tj), 7 =1,2,...,J. The method can be discribed as

follows:

STEP 1. We solve system of equations, which arise from minimization of the

functional J, on the set of the solution of the equations. This system consists of

equations for T7, T, Q and system of adjoint equations:

—(T3)e + L3y = B*m (T =Ty in D x (to, t1),

obs

Ty =0 for t=t,

—(T)t + LT =0 in D x (to,t1),
Ty =T5(tg) for t =1t

a(Q-QO)+ Ty =0 on Q" x (to,t1).
Functions T>, Q(t1) are accepted as approximations to functions T, Q) of the full solution

for the Problem I at ¢ > t1, and T>2(t1) = T'(¢t1) is taken as an initial condition to solve

the problem on the interval (¢1,t2).
STEP 2. Solve problem for S

St + (U, Grad)S — Div(ag - Grad S) = fg in D X (to,t1)
with corresponding boundary and initial conditions. After that the function S is accepted
as an approximate solution, and the function S(t¢1) is taken as an initial condition for the

problem for the interval (t1,%2).
TEP 3. Solve equations of the velocity module.

HUBII MI'Y, Mocksa, 28 anpeas 2011 P -
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Iterative process

-

Given Q(k) one solve all subproblems from step 1, adjoint problem for this step and
define new correction Q(k’+1)

QU = QM — 4P (@(@Q®) — Q) +15) on QF x (t;-1,t)).

Parameters {7y} can be calculated at a =~ 40, by the property of dense solvability, as:

tj

[ @-T)?| ot
G 1 bmral) o=0
J) _

T =5 .
2 ty
Jof @2 _ dodt
tj—l Qéﬂ) o=

In view of the established properties of unique and dense solvability of the
considered Problem Inv and data assimilation problem in each time
interval, we can state that the system of all approximate solutions {¢;}
imparts the minimal value of whole cost functional, i.e., is the solution to

the considered problem for the whole interval (0,t).
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Definition : Problem Inv 2 is densely solvable if for any € > 0 there is a solution ¢ of
the Problem I such that $g(¢) < e.

Proposition 1. Problem Inv 2 is uniquely and densely solvable. The solution of

Problem A2 can be taken as an approximate solution of Problem Inv 2 for sufficiently

small a.
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5. Inverse and variational data assimilation problems, |11

Problem Inv 3
Assume that the sea surface salinity (SSS), observed on a subset Q) of Q, is denoted
by Sops = Sg%?s when t € (t;-1,t;), méj) is the characteristic function of this subset

(1 =1,2,...,J). Considering the boundary condition for S at z = 0 we write as:

_ng_i =Qatz=0on Q(j) X (tj—latj)a

g — ”SZ_S +95(8 = Sa) = Qs + TS Vds at 2 =0 on (Q\QD)) x (tj_1,1;),
z

where the function Q = QU)(j =1,2,...,J).

Let the functions Q) are "additional unknown functions” and we state the following
inverse problem - Problem Inv 3: find the solution ¢ = (u,v,&,T,S) of the Problem
I and functions QUY) | such that, méj)(S — S(()%)S) =0onQ,5=1,2,...,J.

o |
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Variational approach for solving the inver se problem

Introduce the cost functional &, of the form:

S

t

//a|Q—Q(0)|2det—|—\f0 Z / W) gt
0 Q

where

%gj):l/ /a|Q—Q(O)|2det+%/ / m§ |5 — S 12ddt.

ti—1 Q) ti—1 Q@)
Here o > 0, is a "regularization"or "penalty"function ,that may be constant.
Data assimilation problem - Problem A 3: find the solution ¢ of the Problem 1 and
functions {Q(j)}, such that, the cost functional is minimal on the set of the solutions.
This problem for the case QU) = Q(j=1,2,...,J) has been studied and numerically
solved by Agoshkov V.I., Parmuzin E.I. and Shutyaev V.P.[2008].

o |
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Definition : Problem Inv 3 is densely solvable if for any ¢ > 0 there is a solution ¢ of
the Problem I such that $g(¢) < e.

Proposition 1. Problem Inv 3 is uniquely and densely solvable. The solution of

Problem A3 can be taken as an approximate solution of Problem Inv 3 for sufficiently

small a.
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The optimality system obtained consist of successive solving the variational assimilation
F)roblem on intervals t € (t;-1,tj), 7 =1,2,...,J. The method can be discribed as
follows:
STEP 1. Solve problem for T':
T; + (U,Grad)T — Div(ar - Grad T) = fr in D X (to,t1)
with corresponding boundary and initial conditions. After that the function 7T is accepted
as an approximate solution, and the function 7T'(¢1) is taken as an initial condition for

the problem for the interval (1, t2).
STEP 2. We solve system of equations, which arise from minimization of the

functional J, on the set of the solution of the equations. This system consists of

equations for Sp, S2, ) and system of adjoint equations:
—(83)e + L1355 = B*m{"V(S = S4})) in D x (to, t1),
5 =0 for t=t,
—(S7)t +LiST =0 in D x (to,t1),
T =53(to) for t =1t
a(Q—-Q®)+55=0 on Q" x (to,t1).

Functions So, Q(t1) are accepted as approximations to functions S, @ of the full solution
for the Problem I at ¢ > t1, and Sa(t1) = S(¢1) is taken as an initial condition to solve

the problem on the interval (¢1,t2).
TEP 3. Solve equations of the velocity module.
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Iterative process

-

Given Q(k) one solve all subproblems from step 1, adjoint problem for this step and
define new correction Q(k’+1)

QWD = QM — 7 (a(Q™ — Q) +55) on Qf x (tj-1,1;).

Parameters {7y} can be calculated at a =~ 40, by the property of dense solvability, as:

ty .
[ oS (s=s)?| _ dad
Gy 1 bmal) o=0

J) _

T — 35 .
2 tj
S oS (s5)?| _ dot
tj—l Qéﬂ) 7=

In view of the established properties of unique and dense solvability of the
considered Problem Inv and data assimilation problem in each time
interval, we can state that the system of all approximate solutions {¢;}
imparts the minimal value of whole cost functional, i.e., is the solution to

the considered problem for the whole interval (0,t).
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6. | nformation support of solving data assimilation problems

1. Data base (Lebedev S.A., 2005-2010)

Data Base

«World Ocean -
INM RAS»




‘ 2. ARGO data (Zakharova N.B., 2009-2010) \
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7. Numerical experiments

Problem Inv 1

The object of simulation is the Indian Ocean. We can describe the
parameters of the area studied and its geographical coordinates are:
the grid 120x131x33 (latitude xlongitude xdepth); the first mesh point
is the point with coordinates 22.5 E and 33.5 S. The grid steps
with respect to x and y are constant and equal 1.0 and 0.5 degrees,
respectively. The time step is equal to At = 1 hour.

The data assimilation module to assimilate &, was included into the
thermohydrodynamics model of the Indian Ocean. The time period

taken in experiments is 1-10 days (January 2000).

|
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Numerical results with assimilation. The sea level function.

Sea level Jan Slobs deviation fron annual state
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Problem Inv 2

The object of simulation is the Indian Ocean. We can describe the
parameters of the area studied and its geographical coordinates are:
the grid 120x131x33 (latitude xlongitude xdepth); the first mesh point
is the point with coordinates 22.5 E and 33.5 S. The grid steps
with respect to x and y are constant and equal 1.0 and 0.5 degrees,
respectively. The time step is equal to At = 1 hour.

The data of SST, were used for the construction of the function T,
to be assimilated.

The observation data assimilation module to assimilate T,;,, was
included into the thermohydrodynamics model of the Indian Ocean.
The longest time period taken in experiments was 3 months (start

from January 2000).
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Observation data mask by hours

GrADS: COLA/IGES

100E 110E 120E 130E 140E 100E 110E 120E 130E 140E

2007-10-21-19:48 GrADS: COLA/IGES 2007-10-21-19:50

GrADS: COLA/IGES

100E 110E 120E 130E 140E

2007-10-21-19:49 GrADS: COLA/IGES 2007-10-24-12:05

(d) 4
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SST after 12th hours of simulations (start from 1 of January)

120E 130E 140E 90E 100E 110E 120E 130E 140E

GrADS: COLA/IGES 19 20 21 22 23 24 25 26 27 28 29 30 008-05-19-18:13 GrADS: COLA/IGES 18 19 20 21 22 23 25 26 27 28 29 30 008-05-19-18:34

(a) The observation data (b) SST obtaned without assimilation

90E 100E 110E 120E 130E 140E

L (C) SST calculated with assimilation 4|

a=10"°
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Calculated by assimilation with o = 1076 and climatic fluxes Q

120E 130E 140E S50E 60E 70E 100E 110E 120E 130E 140E

—N T T T T T T e
oribs: coLajices —1250 —1000 —750 -500 -250 O 250 500 750 1000 1250 s067-10-3p-1245 o0s: coafes  —180  —150  —120 -90  —60 -30 O 30 60 90  007-10-29-1244

(a) Turbulent heat Hux after (b) Climatic mean heat flux

assimilationon

. |
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Calculated by assimilation with o = 1076 and climatic fluxes Q

90E 100E 110E 120E 130E 140E

owos s 20 21 22 23 24 25 26 27 28 29 30 31 0010100 owos cowes 20 21 22 23 24 25 26 27 28 29 30 31 0 1006 r70s

(a) Observation of SST 3 months and (b) Observation of SST 3 months and

9 hours 3 days

cos: cor/oes 200 2122 23 24 25 26 27 28 29 30 31 pn07-10-24-16u9 oS coa/ices 200 2122 23 24 25 26 27 28 29 30 31 y007-10-24-16:49
L (C) Assimilation of SST during 3 (d) Assimilation of SST 3 months and 4|
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Problem Inv 3

The object of simulation is the Indian Ocean. We can describe the
parameters of the area studied and its geographical coordinates are:
the grid 120x131x33 (latitude xlongitude xdepth); the first mesh point
is the point with coordinates 22.5 E and 33.5 S. The grid steps
with respect to x and y are constant and equal 1.0 and 0.5 degrees,
respectively. The time step is equal to At = 1 hour.

The data on salinity on the surface of the Indian Ocean for the period
of January 2000 were used as S,;s. These data were calculated at each
time moment on the considered grid (i.e., at each hour) based on the
direct model. The salinity flux for the period of January 2000 was
obtained by calculations from the direct model and used for Q(©).
The observation data assimilation module to assimilate S,,s was
included into the thermohydrodynamics model of the Indian Ocean.

The longest time period taken in experiments was 15 days (January
2000).
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Experiment "Twins”. Salinity fluxes on the surface on the 15th calculation day.

40E S50E BOE 70E 80E 90E 100E 110E 120E 130E 140E 40E S50E BOE 70E 80E 90E 100E 110E 120E 130E 140E

—l T T T T T e —l T T T T T e
o0 cous/ices —0-0018-0.0015-0.0012-0.0009—0.0006-0.0003 O 0.0003 0.0006 0.0009  5007-07-11-18:40 o0 cous/ices —0-0018-0.0015-0.0012-0.0009—0.0006-0.0003 O 0.0003 0.0006 0.0009  5057-07-11-17:44

(a) Calculation with assimilation for (b) Calculation with assimilation for

o = 10~5 a = 10°

B0E 70E 80E 90E 100E 110E 120E 130E 140E
‘ —l T T T T T e—
ari0s: coa/ices —0-0018-0.0015-0.0012-0.0009-0.0006-0.0005 0 0.0003 0.0006 0.0009  507-07-11-17:35

(C) Calculation by  the  model

-

|
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Problem Inv 4

The object of simulation is the World Ocean. We can describe the
parameters of the area studied and its geographical coordinates are:
the grid 360x227x40 (latitude xlongitude xdepth); the first mesh point
is the point with coordinates 22.5 E and 78.25 S. The grid steps
with respect to x and y are constant and equal 1.0 and 0.5 degrees,
respectively. The time step is equal to At = 1 hour.

The data of SST, were used for the construction of the function T
to be assimilated.

The observation data assimilation module to assimilate T,,, was
included into the thermohydrodynamics model of the World Ocean.
The longest time period taken in experiments was 1 months (start
from January 2004).
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Calculated by assimilation with o = 1076

BLAOS: COLASGET 1Q08-17-17- 1000 Brad5: COLASKES TOO9-90-Q4- 1432

(a) Number of observation of SST

(accumulated for 6 hours)

a P e 16D a7 ) 1 o BT 150E o 120W Baw 2 [

E i R
8] 3 =] b 1z 1% 18 Z1 4 27 30
CA0E: COLA SIS 08 B3 B4- 1435 GADT: COLAGES 2009- 03— [4- 14238

(C) Calculation by the model (d) Assimilation of SST
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Conclusion

The class of inverse and corresponding variational data assimilation problems for

the ocean dynamics mathematical models were formulated and studied.

The obtained results are developing and applying now to variational

"images'"assimilation problems.

The results obtained in INM RAS are the theoretical background for the
construction of Informational-computational systems for variational data

assimilation into the ocean circulation model.

Poccufickan akansmMmMa Hayk
FIHCTMTYT BEINHMCAMTEABHOM MATEMAT MEM

MHQJOpMaLI.MOHHO—BbIHMCﬂHTeHbHaH cUuCcTeMa
MBC-T1

{MHOMACKME oreaH)

Oanee
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Thank You?

|
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