ПРОСТЫЕ МОДЕЛИ СПИРАЛЬНЫХ ВИХРЕЙ В БАРОКЛИННОЙ АТМОСФЕР

М.В. Курганский

Институт физики атмосферы им. А.М. Обухова Российской академии наук, Пыжевский пер. д. 3, 119017 г. Москва (е-мейл: kurgansk@ifaran.ru)

НИВЦ МГУ им. М.В.Ломоносова, 27 сентября 2012 года

Workshop TODW01 "Topological Fluid Dynamics II" (IUTAM Symposium) Isaac Newton Institute for Mathematical Sciences Cambridge, UK, July 23-27, 2012

План доклада:

1. Введение/Мотивация

- Применения к динамике смерчей (торнадо) и пыльных вихрей
- Обобщение модели вихря Рэнкина (с аксиальным потоком в ядре вихря) на случай бароклинной жидкости, в приближении Буссинеска (для аксиально направленной силы плавучести, сосредоточенной в вихревом ядре)
- Построение простейших, насколько это возможно, вихревых моделей, которые обеспечивают такое обобщение

2. Автомодельные вихревые решения

- Предварительные сведения и основы
- Контролирующая роль разрушения вихря («vortex breakdown»)
- 3. Модель «вихревого конуса»
 - Общая формулировка
 - Бюджет спиральности
- 4. Магнитостатическая аналогия

Выводы/Заключение

Торнадо вблизи Anadarko, Oklahoma 3 мая 1999 (VORTEX 99; <u>V</u>erification of the <u>O</u>rigins of <u>R</u>otation in <u>T</u>ornadoes <u>E</u>xperiment)

Пыльный вихрь в Пустыне Атакама вблизи Huara, Chile (январь 2009)

Две характерные морфологические формы пыльных вихрей: (a) «rope-type vortices» и (b) «vase-type vortices»

'Demon spawn' («Дьявольское отродье») (I)

Большой, плохо структурированый вихрь сопровождается хорошо организованным маленьким «трубчатным» вихрем на переднем крае движущейся вихревой системы. Маленький вихрь вращается в направлении, противоположном основному вихрю и он как бы «обернут» вокруг большого вихря. После того, как грузовичек был помещен между вихрями, тонко сбалансированные воздушные потоки были нарушены и маленький вихрь диссипировал [см. Metzger S, Kurgansky M, Montecinos A, Villagran V, Verdejo H, "Chasing dust devils in Chile's Atacama Desert", Lunar & Planetary Science Conference, Houston, USA, March 2010].

'Demon spawn' («Дьявольское отродье») (II)

Большой, плохо структурированый вихрь сопровождается хорошо организованным маленьким «трубчатным» вихрем на переднем крае движущейся вихревой системы. Маленький вихрь вращается в направлении, противоположном основному вихрю и он как бы «обернут» вокруг большого вихря. После того, как грузовичек был помещен между вихрями, тонко сбалансированные воздушные потоки были нарушены и маленький вихрь диссипировал [см. Metzger S, Kurgansky M, Montecinos A, Villagran V, Verdejo H, "Chasing dust devils in Chile's Atacama Desert", Lunar & Planetary Science Conference, Houston, USA, March 2010].

- Автомодельное решение Л.Н. Гутмана «Теоретическая модель смерча» Известия АН СССР, Серия геофизическая №1, с. 79-93, 1957; см. также Кио 1966, 1969 и др., в котором вертикальная скорость в общем возрастает с высотой; учтены турбулентная температуропроводность и турбулентное трение.
- Это модель активного, или «разгонного», участка вихря, который, например, в пыльных вихрях (в условиях очень сильной конвективной неустойчивости) имеет вертикальную протяженность порядка масштаба (длины) Обухова, т.е. реально всего несколько метров.

$$L = -\frac{u_*^3}{\kappa B} \qquad B = (g/T_0)u_*T_* \qquad H = \rho c_p u_*T_*$$

- Для смерчей (торнадо) такой «разгонный» участок может составлять сотни метров.
- Инерционный («баллистический») участок вихря (exhaust region), где применимо невязкое автомодельное решение, построенное на основе обобщения вихря Рэнкина, однако с нетривиальной термодинамикой.

Предварительные сведения

Уравнения движения и неразрывности в приближении Буссинеска в инерциальной (невращающейся) системе отсчета:

$$\mathbf{D}\mathbf{v}/\mathbf{D}t = -\nabla\phi + \mathbf{b} + \mathbf{F} \qquad \nabla \cdot \mathbf{v} = 0$$

Здесь v — скорость, ϕ — отклонение давление от гидростатического, поделенное на среднюю плотность жидкости, b — сила плавучести и F — сила турбулентного трения.

В полярных координатах (*r*, *φ*, *z*) из нелинейного уравнения термического ветра (для установившегося невязкого осесимметрического потока) следуют две интегральные формулы:

$$\int_{0}^{\infty} \left(w \omega_{\varphi} - \frac{v^2}{r} \right) \mathrm{d}r \bigg|_{z_{-}}^{z_{+}} = \int_{z_{-}}^{z_{+}} b(0, z) \mathrm{d}z$$

$$2\pi\int_{z_1}^{z_2} dz \int_{0}^{\infty} 2b\omega_z r dr = -\left[\frac{8\pi}{3}\int_{0}^{\infty} v^3 dr - 4\pi\int_{0}^{\infty} vw\omega_{\varphi} r dr\right]$$

Здесь, *b* – плавучесть; v = (*u*,*v*,*w*) и $\omega = (\omega_r, \omega_{\varphi}, \omega_z)$ – вектора скорости и завихренности, соответственно; буквами *z*_и *z*₊ отмечены два произвольных высотных уровня.

Общее уравнение баланса спиральности в приближении Буссинеска :

$$\frac{\partial}{\partial t} (\mathbf{v} \cdot \boldsymbol{\omega}) + \nabla \cdot \mathbf{S} = 2\boldsymbol{\omega} \cdot \mathbf{b} + 2\boldsymbol{\omega} \cdot \mathbf{F}$$

$$\mathbf{S} = 2\mathbf{v}(\mathbf{v} \cdot \boldsymbol{\omega}) - 2\boldsymbol{\omega}\mathbf{v}^2 - 2\mathbf{b} \times \mathbf{v} - 2\mathbf{F} \times \mathbf{v} + \partial_t \mathbf{v} \times \mathbf{v}$$

Здесь, b — сила плавучести и F — сила турбулентного трения; S обозначает вектор потока спиральности. Для установившегося осесимметрического потока невязкой жидкости это общее уравнение баланса спиральности (Курганский, 2008) эквивалентно уравнению (2).

Автомодельное вихревое решение (спиральный бароклинный вихрь Рэнкина первого типа)

Используются соображения автомодельности, когда относительное распределение компонент скорости поперек вихря предполагается одними и тем же на всех высотах. Профиль азимутальной скорости v на каждом горизонтальном уровне отвечает вихрю Рэнкина с потенциальным периферийным течением (ср. Kelvin Lord, 1880). Вертикальная скорость w в вихревом ядре направлена вверх. На каждом горизонтальном уровне поле w однородно внутри вихревого ядра; в периферийной потоке w=0. Радиус вихревого ядра $r_m(z)$ является монотонно возрастающей функцией высоты z. Нелинейное дифференциальное уравнение (Kurgansky, 2005; ср. магнитостатическую задачу для солнечных пятен в Schlüter and Temesváry, 1958)

$$-\frac{Q^2}{2\pi^2}\zeta \frac{d^2\zeta}{dz^2} + \frac{Q^2}{2\pi^2}\zeta^4 - \Gamma^2\zeta^2 = -\int_{z}^{\infty} b(0,z)dz \qquad \zeta = r_m^{-1}(z)$$

следует из уравнения (1) и описывает строение вихря при заданных удельном угловом моменте импульса Г и вертикальном объемном потоке Q и для предписанных значений b (0, z). Морфологически простейшее вихревое решение имеет вид (Kurgansky, 2005)

$$\zeta = a^{-2}(h-z), \quad a = \text{const} \qquad r_m(z) = \frac{a^2}{h-z}$$

Автомодельное вихревое решение (спиральный бароклинный вихрь Рэнкина первого типа)

(a)

Сигулярный уровень z = h ассоциирован с верхней границей атмосферного конвективного пограничного слоя; земной поверхности отвечает z = 0. Вихревое решение имеет смысл начиная с критической высоты $z=\delta << h$, где происходит «vortex breakdown». В применении к уровню $z = \delta$ это означает, что

$$v_m^2 = \frac{b(0,\delta)(h-\delta)}{2(1-\alpha^2)}$$

Спиральный параметр $\alpha \equiv w / v_m$ обратен «вращательному отношению» (swirl ratio); урние (3) для максимальной скорости ветра v_m похоже на уравнение для «термодинамического предела скорости», однако существенно зависит от параметра α .

Контролирующая роль «взрыва вихря» (vortex breakdown) (Benjamin, 1962; Leibovich, 1970; Fiedler & Rotunno, 1986 и др.) ведет к тому, что

$$0 \le \alpha^2 \le 1/2$$

или, что то же самое,

$$\frac{1}{2}b(0,\delta)(h-\delta) \le v_m^2 \le b(0,\delta)(h-\delta)$$

При заданном значении «момента сил плавучести», $b(0, \delta)$ ($h-\delta$)= const, вихрь наиболее силен, когда конвективная закрученная струя типа вихря Рэнкина развивающаяся в приземном слое $0 \le z < \delta$ наименее сверхкритична; ср. с максимальным к.п.д. идеальной (обратимой) тепловой машины Карно.

«Vortex breakdown»

Используется непрерывность вертикального потока импульса при переходе через уровень, где происходит разрушение вихря

122

$$2\pi \int_{0}^{\infty} (w^{2} + \phi) r dr \bigg|_{z_{1}}^{z_{1}} = 0$$

$$X_{1} \log \frac{X_{2}}{X_{1}} + \frac{X_{1}}{X_{2}} - 1 = 0 \qquad \qquad X_{1,2} = \frac{\pi^{2} \Gamma^{2} r_{1,2}^{2}}{2Q^{2}} \equiv \frac{1}{2\alpha_{1,2}^{2}}$$

Два сопряженных вихревых состояния (свехкритическое и докритическое) существуют, лишь когда (ср. Fiedler and Rotunno, 1987)

$$X_1 < 1$$
 $\alpha_1^2 > 1/2$

Критическим значением для разрушения вихря («вихревого скачка») является

$$X_1 = 1$$
 $\alpha_1 = \alpha_2 = 1/\sqrt{2}$

Вертикальный поток энергии испытывает отрицательный скачок при переходе через уровень разрушения вихря (X₂ > X₁)

$$\Delta J_{z} = 2\pi \int_{0}^{\infty} \left(\frac{v^{2} + w^{2}}{2} + \phi \right) w \, r \, dr \bigg|_{z_{1}}^{z_{2}} = -\frac{\pi^{2} \Gamma^{4}}{8Q} \log \frac{X_{2}}{X_{1}} \left(\frac{1}{X_{1}} + \frac{1}{X_{2}} - 2 \right) < 0$$

Vortex breakdown (1)

Vortex breakdown (2)

Vortex breakdown (3)

Vortex breakdown (4)

Vortex breakdown (5)

Vortex breakdown (6)

Vortex breakdown (7)

Модель «вихревого конуса» (спиральный бароклинный вихрь второго типа)

Закрученная (теплая) плавучая струя с потенциальным полоидальным компонентом скорости (*u*, *w*) выпускается из «виртуального» источника массы, который расположен ниже поверхности земли при z = -d (ср. Morton et al., 1956). Радиус струи линейно растет с высотой

$$r_m(z) = c(z+d), \quad c << 1$$

Азимутальная компонента завихренности ω_{φ} имеет δ - образную особенность на границе струи и тождественно обращается в нуль вне границы. Азимутальная скорость на каждом горизонтальном уровне имеет тот же радиальный профиль, что и спиральный бароклинный вихрь Рэнкина первого типа; вихревое ядро конгруэнтно струе. Вихревое решение имеет физический смысл при $z \geq \delta$ ($\delta \ll d$). Для такого вытянутого (тонкого, «slender») вихря, в полном согласии с уравнением (3), уравнение (1) дает при $z=\delta$:

$$v_m^2 = \frac{b(0,\delta)(d+\delta)}{2(1-\alpha^2)}$$

Все рассуждения [касающиеся разрушения вихря и его «перерезания» при *z*=δ], которые относились к уравнению (3), равным образм приложимы к уравнению (4).

Модель «вихревого конуса» (спиральный бароклинный вихрь второго типа)

Нисходящий поток спиральности

Для спирального бароклинного вихря второго типа нисходящий поток спиральности *S* на уровне «разрыва вихря», $z = \delta$, равен величине [членами O(c^2) пренебрегается]

$$S = 2\pi v_m^3 r_m \left(1 - \alpha^2\right)$$

С хорошей точностью формула (5) приложима к спиральному бароклинному вихрю первого типа; погрешность обусловлена небольшим восходящим потоком спиральности на сингулярном уровне *z* = *h*

$$S' = -Q^2 \Gamma / \pi a^4$$

который (поток) суммируется с (5) и, впрочем, проявляется на всех высотах, включая z = h.

Для тонкого спирального бароклинного вихря Рэнкина вертикальный поток энергии *J*₂ прямо пропорционален вертикальному потоку спиральности *S*₂:

$$J_z = \frac{Q}{8\pi^2\Gamma}S_z$$

 $S_z \equiv -S$

5

Полная (суммарная) спиральность вихря

Спиральный бароклинный вихрь второго типа («вихревой конус») имеет вполне определенное, конечное значение полной спиральности

$$H = \iiint_{W} (\mathbf{v} \cdot \nabla \times \mathbf{v}) \mathrm{d}\tau \cong 4\pi\alpha v_{m}^{2} r_{m} d$$

равное удвоенному произведению «тороидальной», $K_t = 2\pi v_m r_m$, и «полоидальной», $K_p = \alpha v_m d$, кельвиновских циркуляций скорости (ср. Moffatt, 1969).

Для спирального бароклинного вихря первого типа полная спиральность H бесконечна изза неограниченно возрастающего вклада от слагаемого v ω_{σ} , когда $z \to h$.

Математическая аналогия между гидродинамикой и магнитостатикой

Гидродинамические уравнения Эйлера

$$\rho(\mathbf{v}\cdot\nabla)\mathbf{v} = -\nabla p + \rho \mathbf{g}$$

vs уравнения магнитостатики (см. напр., Chandrasekhar, 1961)

$$0 = -\nabla p + \rho \mathbf{g} + \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B}$$
$$0 = -\nabla p + \rho \mathbf{g} + \frac{1}{\mu} (\mathbf{B} \cdot \nabla) \mathbf{B} - \frac{1}{\mu} \nabla \left(\frac{\mathbf{B}}{2} \right)$$

Вводится полное давление, равное сумме гидростатического и магнитного:

$$\varpi = p + \frac{\mathbf{B}^2}{2\mu}$$
 $0 = -\nabla \varpi + \rho \mathbf{g} + \frac{1}{\mu} (\mathbf{B} \cdot \nabla) \mathbf{B}$

Принципиальным является различие в знаке перед нелинейными членами в ур-ниях (5, 6). В гидродинамике тороидальный компонент скорости ответственен за центробежное ускорение, которое уравновешивается силой градиента давления. Тороидальный компонент магнитного поля ведет к «обжимающим» напряжениям Максвелла, которые уравновешиваются или магнитным давлением за счет полоидального магнитного поля, или избыточным гидродинамическим давлением.

Магнитостатические аналоги спиральных бароклинных вихрей

Автомодельный подход к магнитостатической задаче о «магнитной дыре» (cp. Schlüter and Temesváry, 1958); μ — магнитная проницаемость и p_e — стандартное атмосферное давление:

$$-2\zeta\zeta''\int_{0}^{\infty}F^{2}(x)dx + 2\zeta^{4}F^{2}(0) - \frac{1}{2}\zeta^{2}\int_{0}^{\infty}G^{2}(x)dx = \mu p_{e}(z)$$

Первый и второй члены в левой части описывают эффект магнитного натяжения и магнитного давления, соответственно, оба за счет полоидального магнитного поля. Третий (подчеркнутый) член описывает эффект магнитного натяжения за счет тороидального магнитного поля; ниже этим членом пренебрегается, равно как и в Schlüter and Temesváry (1958).

Политропная стандарная атмосфера:

$$T(\infty, z) = \Theta - \gamma z$$

Два различных случая (в зависимости от знака γ):

 $p_e(z) = p(\infty, z) = P\left(\frac{\Theta}{\gamma} - z\right)^{\frac{\delta}{R\gamma}}$

B
$$p_e(z) = p(\infty, z) = P\left(\frac{\Theta}{|\gamma|}\right)$$

$$0 \le z < h \equiv \frac{\Theta}{\gamma}$$
$$-d \equiv -\frac{\Theta}{|\gamma|} \le z <$$

 ∞

Магнитостатические аналоги спиральных бароклинных вихрей

Два особых (специальных) случая:

 $\frac{g}{\gamma R} = 4$ Для солнечной ионизованной (одноатомной) атмосферы:

 $\Gamma = (5/8)\Gamma_d$

Нулевое магнитное натяжение => аналог спирального бароклинного вихря первогог типа

 $\zeta = \frac{h-z}{a^2} \qquad \qquad a^8 = \frac{2F^2(0)}{\mu P}$

 $\frac{g}{|\gamma|R} = 4 \qquad \zeta = \frac{1}{c(d+z)} \qquad \frac{2}{c^4} F^2(0) - \frac{4}{c^2} \int_0^\infty F^2(x) dx = \mu P$

Магнитное натяжение не равно нулю (как в предыдущем случае), но пропорционально доминирующему магнитному давлению => аналог спирального бароклинного вихря второго типа

Между двумя типами спиральных бароклинных вихрей Рэнкина имеется дуальность; первый тип — это простейший вихрь такого рода, а второй — следующий за простейшим.

Выводы/Заключение

 Рассмотрены два различные асимптотические решения невязких уравнений Буссинеска для установившихся спиральных бароклинных вихрей Рэнкина с предписанным бароклинным форсингом. В обоих случаях относительное распределение компонент скорости поперек вихря неизменно с высотой (гипотеза автомодельности). Первое вихревое решение демонстрирует монотонный рост радиуса вихревого ядра с высотой, причем этот радиус становится бесконечным на определенной критической высоте, и соответствующее убывание вертикальной завихренности. Второе вихревое решение схематизирует вихревое ядро как перевернутый конус малой угловой апертуры.

• Идеализированные вихри погружены в конвективно-неустойчивый пограничный слой атмосферы: невязкие асимпотические решения прерываются на малой высоте над землей, где происходит «взрыв вихря».

 Обе модели предсказывают существенно одинаковую зависимость максимальной азимутальной скорости ветра в вихре от «вращательного отношения» (swirl number) – отношения максимальной азимутальной скорости к средней вертикальной скорости восходящих движений в вихревом ядре)

 Для второго вихревого решения («вихревого конуса») удается строго замкнуть баланс спиральности, в то время как для первого вихревого решения это замыкание наталкивается на определеннные трудности, из-за наличия сингулярности в модели на критическом уровне.

Список литературы

- Kelvin Lord (1880) Phil Mag 10: 155-168
- Barcilon A (1967) J Fluid Mech 27: 155-175
- Benjamin TB (1962) J Fluid Mech 14: 593-629
- Fiedler BH, Rotunno R (1986) J Atmos Sci 43: 2328-2340
- Leibovich S (1970) J Fluid Mech 42: 803-822
- Moffatt HK (1969) J Fluid Mech 35: 117-129
- Morton BR, Taylor G, Turner JS (1956) Proc Roy Soc (London) A234: 1-23
- Schlüter A, Temesváry S (1958) IAU Symposium No.6: Electromagnetic Phenomena in Cosmical Physics, Cambridge Univ Press pp. 263-274.

- Kurgansky MV (2005) Dyn Atmos Oceans 40: 151-162
- Kurgansky MV (2006) Meteorol Z 15: 409-416
- Курганский МВ (2008) Изв РАН Физика атмосферы и океана 44: 67-74
- Kurgansky MV (2009) Q J Roy Meteorol Soc 135: 2168-2178

Работа финансировалась РФФИ, гранты №№ 10-05-00100-а и 12-05-00565-а.

Благодарю за внимание!