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ABSTRACT

An analytical theory is presented for the motion of an initially symmetric barotropic vortex on a beta-plane
at rest, the prototype problem in the theory of tropical cyclone motion. In the case of vortices with parameter
values appropriate to tropical cyclones, the theory shows excellent agreement with equivalent numerical model
calculations for a period of between one and two days. In particular, the vortex track and the evolution of
vortex asymmetries, the so-called beta gyres, are accurately predicted. The calculations provide further insight
into dynamics of tropical cyclone motion in general and provide a firmer basis for interpreting the numerical
solutions in particular. They are relevant also to the important problem of designing more appropriate “bogus”
vortices for the initialization of dynamically based tropical cyclone forecast models.

1. Introduction

In some of the early theories of tropical cyclone mo-
tion, analytical expressions were derived for the initial
velocity of the cyclone center, assuming the cyclone to
be an initially symmetric vortex in some environmental
flow on a beta plane (Sasaki and Miyakoda 1954, Sa-
saki 1955; Kasahara 1957). The motion was assumed
to be governed by the barotropic vorticity equation at
some hypothesized “steering level.” It was shown that
the vortex center moves with a speed close to that of
the environmental flow at its center, but with a drift
at right angles to and, in the Northern Hemisphere, to
the left of the direction of the absolute vorticity gradient
of the environmental current. The drift speed is pro-
portional to this gradient and typically only a few ki-
lometers per day.

A more complete and largely analytical theory for
motion that took into account the interaction between
the vortex and the environmental flow was worked out
by Kasahara and Platzman (1963, henceforth referred
to as KP). They showed that in addition to the motion
characteristics noted above, the vortex is subject also
to an initial acceleration in the direction of the absolute
vorticity gradient. More recent numerical calculations
have shown that this acceleration subsequently over-
shadows the small predicted drift at right angles to it,
leading to a displacement on the order of 100 km in
the first 24 hours. However, the direction rapidly de-
viates from the initial direction predicted by KP’s the-
ory. For example, in the absence of an environmental
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current, a symmetric vortex on a beta plane accelerates
northwestwards (southwestwards) rather than pole-
wards in the Northern (Southern) Hemisphere.

The foregoing problem, concerning the motion of
an initially symmetric, nondivergent, barotropic vortex
on a beta plane with no environmental flow might be
viewed as the prototype problem in the theory of trop-
ical cyclone motion. Accordingly, it has been the sub-
ject of much recent study, mainly based on numerical
model simulations (Chan and Williams 1987; Fiorino
and Elsberry 1989; Smith et al. 1990, henceforth re-
ferred to as SUD; Shapiro and Ooyama 1990). In the
present paper we present a simplified analytical theory
for this problem which, hitherto, because of its intrin-
sically asymmetric nature has been considered intrac-
tible.

2. Basic theory

We consider nondivergent barotropic flow on a
(nonequatorial ) beta plane governed by the vorticity
equation

I« I 9%

Ey + Uy ™ + ‘v* e + Bv, =0,
where u, = (uy, v, ) is the velocity vector in a rectan-
gular coordinate system (x, y) which has x pointing
eastwards and y pointing northwards; {, is the vertical
component of relative vorticity, dv,/0x — du,/dy; B
is the northward derivative of the Coriolis parameter
f, and ¢ is the time.

The prototype problem to be studied concerns the
motion of an initially symmetric vortex with a pre-
scribed tangential velocity distribution V() and cor-
responding vorticity profile {(r) = r~'d(rV)/dr, cen-

(2.1)
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tered at the origin at time ¢ = 0, r being the radial
distance from the vortex center. It is assumed that there
is no environmental flow.

As a preliminary we consider the more general
problem when there is an ambient flow U (x, y, t).
Even if this is not present, the vorticity distribution
develops asymmetries because of the advection of
planetary vorticity by the vortex circulation (e.g., see
Kasahara 1957) and one needs to decide whether to
regard these asymmetries as part of the distorting vor-
tex, or as part of the environment, in which case the
vortex remains symmetric. This so-called partitioning
problem was addressed at length by KP who suggested
various methods, highlighting the fact that there is no
unique solution to the problem. For the present analysis
there are advantages to adopting KP’s method III in
which, by definition, the initial vortex translates un-
changed with some velocity c¢(¢) while all the asym-
metries that develop as a result of its interaction with
the ambient flow, or with the planetary vorticity field,
are considered. as part of the ambient flow. One ad-
vantage is that all departures from the initial vortex
are contained in a single component of the partition,
i.e., the ambient flow U(x, y, ). This partitioning
method was used also by SUD. If we let u, = U + u,
where u denotes the symmetric vortex velocity about
its center and define { = k:V X u, I' = k-V X U,
where k is the unit vector in the vertical, then Eq. (2.1)
can be partitioned into the two equations

‘;—f + (1) Vi =0, (2.2)
and
%[E= —u- V(T +f)—(U—¢)- V¢
—U-V(T+/); (2.3)

KP devised a variational method to determine ¢(¢),
while SUD took this to be the rate of displacement of
the position of maximum relative vorticity in the flow.

The simplification of (2.3) leading to a tractable an-
alytical problem for the vortex motion was guided
strongly by the numerical calculations of SUD. These
authors showed that, in the absence of a basic flow, the
vorticity changes are dominated by the terms in Eq.
(2.2); i.e. to a first approximation the local vorticity
change is essentially determined by the advection of
the vortex vorticity with velocity ¢ (SUD, Fig. 6). Fur-
thermore, ¢ is to a close approximation equal to the
environmental flow velocity at the vortex center and
|U — c| is relatively small (<% |c|) over much of the
vortex (SUD, Fig. 8). But U is related to the environ-
mental vorticity, the time evolution of which is deter-
mined by Eq. (2.3). SUD found also that to a surpris-
ingly good first approximation, the vortex asymmetries
governed by this equation can be determined by ne-
glecting the motion of the vortex and calculating I" on
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the assumption that its rate of change is associated with
the advection of absolute environmental vorticity (T’
+ /) by the vortex circulation; i.e.

ar

= —u-V(T + /).

a1 (2.4)

This result is contrary to what one would deduce from
a scale analysis of Eq. (2.3), which would suggest that
the term —(U — ¢)- V{is the dominant term contrib-
uting to dI' /9. The scale analysis is nevertheless worth
considering.

Following KP we take length and velocity scales Lz,
Ug and Ly, Uy for the environment and the vortex,
respectively, and obtain the following relative sizes of
terms on the right hand side of (2.3):

v U
BLy*

Ue
where we have assumed that |VI'| < 8, implying that
Li > (Ug/B)"?. Taking typical values Uz =2 ms™!,
Ly=50km,U,=50ms'and8=2X10""m™!
s~! (atropical value), then Ly > 300 km and estimates
for these ratios are:

251000 1,

suggesting that the second term is of over-riding im-
portance. These estimates are naive for two reasons.
First, as noted above, |U —¢| <max [| U], |c¢|] across
the vortex core so that estimate of 1000 is likely to be
a gross overestimate for the second term (note that
|V ¢| is relatively large in the vortex core while |U
— ¢| is relatively small so that the actual magnitude of
this term is difficult to precisely diagnose in numerical
calculations because of inaccuracies in determining ¢).
Second, in the present method of partitioning, the en-
vironmental vorticity field includes the vortex scale
asymmetries and, as shown by SUD, the shearing effect
of the strong angular shear leads to progressively fine
scale structure in this field (e.g., see SUD, Fig. 9). These
two factors are obstacles to a meaningful scale analysis
and in the theory to be presented we have been guided
by insights derived from the numerical calculations.

For the reasons given above, the diagnostic of the
second term on the right of (2.3) from the numerical
model is unreliable, but the calculations in general
point to the dominance of the first term in determining
the vortex asymmetries. Consistent with the scale anal-
ysis, the third term is not appreciable. Indeed, if the
terms in (2.3) are interpreted so that d/9¢ is measured
relative to the moving vortex, then U must be replaced
by U — ¢ in the last term on the right hand side. This
reduces the magnitude of this term in the region of the
vortex where U ~ ¢, but may increase its size at large
radii if, for example |U| — 0 there, as in the prototype
problem.

Guided by the results of SUD, we assume that, in
the prototype problem (where U(x, y, 0) = 0), Eq.
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(2.3) can be approximated by (2.4), implying that local
relative vorticity changes are due to advection of ab-
solute vorticity by the vortex. In cylindrical coordinates
(r, 8) centered on the vortex center, Eq. (2.4) may be
written as

i) d
-+ U |T+/)=0 2.5

[a[ (r)ao]( f)} (2.5)
where Q(r) = V(r)/r is the angular rotation rate of the
tangential motion. Assuming that I' = 0 at ¢ = 0, this
equation is easily integrated ' to give the environmental

vorticity at time ¢,

Tu(r,8,t) = i(r, 1) cost + &(r, t) sinfd, (2.6)
where

$1 = —Prsin{Ur)t}, (2.7a)

&= —PBr[1 —cos{Q(r)t}]. (2.7b)

The streamfunction corresponding to this asym-
metry satisfies the Poisson equation V>¥, = T',, with
Dirichlet boundary condition ¥, - 0 as r = oo and
it readily follows that

W, (r,0,t) =¥, (r,t)cosd + Wy(r, t) sind,

where forn = 1, 2,

(2.8)

w0 =5 [ oo, 0dp

1 r
-~ [ 6, 0. 29

The Cartesian velocity components U,, V, (= —d¥,/
dy, d¥,/dx) are given by
v, v oy N4
U, = cosé sm()[— - —1] sin20 —= — cos20 —,
r ar or r
(2.10a)
ov, v, v, v
V, = cos? — + sin?0 — — cosf sinf [— - ——2]
or r. r ar
(2.10b)

In order that these expressions give a unique velocity
at the origin, they must be independent of # as r — 0,
in which case

av,

= lim Y
or ’

r—>0 F

(n=1,2),

r=0
and using (2.9) it follows that
av,

™ (2.11)

1 [
=_—2-J(; {n(ps l)dp

r=0

! See also SUD, Egs. (4.1)-(4.3).
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If we make the reasonable assumption that the sym-
metric vortex moves with the velocity of the asym-
metric flow across its center, the vortex speed is simply

o 2 |
r=0 |

c(®) [ or|_, or
which can be evaluated using (2.11).

The assumption is reasonable because at the vortex
center {, > [ and the governing equation (2.1) ex-
presses the fact that ¢, + f is conserved following the
motion. Since the symmetric circulation does not con-
tribute to advection across the vortex center, advection
must be by the asymmetric component and with the
KP method of partitioning, this is simply the environ-
mental flow by definition. The slight error committed
in supposing that ¢, is conserved rather than {, + f
is equivalent to neglecting the propagation of the vortex
center as described by the early initial motion theories
(Sasaki and Miyakoda 1954; Sasaki 1955; Kasahara
1957). The track error amounts to no more than a few
kilometers per day which is negligible compared with
actual vortex displacements (e.g., see Fig. 5).

The vortex track X(¢) = [X(¢), Y(¢)] may be ob-
tained by integrating the equation dX/dt = ¢(i),
whereupon, using (2.11) and (2.12),

I e[
[X(t)] _ EJ; U; $(p, t)dt]dp
Y | [ (
(1) "Efo {fo fl(p,t)dz]dp

Using (2.7), this expression reduces to

" 6f [ sm{ﬂ(r)t}]d,
[Ym}:

(2.12)

(2.13)

Q(r)

1 1 ~ cos{Q(r)t} ’
Eﬁf [ (r) }dr

(2.14)

which determines the vortex track in terms of the initial
angular velocity profile of the vortex.

To illustrate the solutions we choose the vortex pro-
file used by SUD so that we can compare the model
results with their numerical solutions. The velocity
profile V' (r) and corresponding angular velocity profile
Q(r) are shown as solid lines in Fig. 1. The velocity
profile is approximately the same as that used by Chan
and Williams ( 1987); the maximum wind speed of 40
m s”! occurs at a radius of 100 km and the region of
gale force winds (>15 m s~') extends to 300 km. The
angular velocity has a maximum at the vortex center
and decreases monotonically with radius. Figure 2
shows the asymmetric vorticity field calculated from
(2.6) and the corresponding streamfunction field from
(2.8) at selected times, while Fig. 3 compares the an-
alytical solutions with numerical solutions at 24 hours.
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FIG. 1. (a) Tangential velocity profile V'(r) and (b) angular velocity profile (r) for the symmetric
vortex. Solid lines are for the standard vortex used by SU. Dashed lines are for a smaller vortex
with the same functional form, but for which ¥ = 5 m s~ at r = 300 km.

The integrals involved are calculated using simple
" quadrature. After one minute the asymmetric vorticity
and streamfunction fields show an east-west oriented
dipole pattern as predicted in the early “initial motion”
theories (e.g., Adem 1956; Kasahara 1957). The vor-
ticity maxima and minima occur at the radius of max-
imum tangential wind and there is a southerly com-
ponent of the asymmetric flow across the vortex center
(Fig. 2a). As time proceeds, the vortex asymmetry is
rotated by the symmetric vortex circulation and its
strength and scale increase for reasons discussed by
SUD. In the inner core (typically r < 200 km), the
asymmetry is rapidly sheared by the relatively large
radial gradient of Q (Fig. 1b). In response to these vor-
ticity changes, the streamfunction dipole strengthens
and rotates also, whereupon the asymmetric flow across
the vortex center increases in strength and rotates
northwestwards. Even at 24 hours, the asymmetric
vorticity and streamfunction patterns show remarkable
similarity to those diagnosed from the complete nu-
merical solution (Fig. 3). Nevertheless, the small dif-
ferences in detail between the vorticity patterns are
manifest in a more westerly oriented streamflow across
the vortex center in the analytical solution and these
are reflected in differences in the vortex tracks (see
below). It should be noted that the numerical model
simulations are for a zonal channel with impervious
northern and southern boundaries. However, we have
found that the differences in boundary conditions do
not account for the differences in the streamfunction
patterns shown in Fig. 3 which show only a part of the
2000 km X 2000 km domain used for the numerical
calculations. In section 3 we show that the principle
differences at this time are due to the neglect of the
term —(U.— ¢) - V {in calculating the vorticity field in
the analytical model.

The evolution of the streamfunction asymmetry in-
the numerical model was studied by Fiorino and Els-
berry (1989) and by SUD. The foregoing analytlcal

solution and comparisons show that the asymmetry is
dominated by a pair of orthogonal dipoles with dif-
ferent radial profiles and strengths and that these pro-
files evolve with time. These profiles, characterized by
the functions ¥,(r, ¢) in Eq. (2.8), are shown in Fig.
4 at 24 hours.

* Figure 5 shows the track of the analytical vortex over
a 48 hour period compared with that in the numerical
solution, which can be regarded as the control case.
The track calculation was performed on a 4000 km
X 4000 km domain with a 20 km grid size. It follows
that the analytical solution gives a track that is too far
westward, but the average speed of motion is compa-
rable with, but a fraction smaller than in the control
case for this entire period. However, one must expect
the analytical solution to deteriorate after 24 hours
(SUD, see especially Fig. 5).

While the overall agreement between the analytical
and numerical results is remarkable considering the
simplicity of the theory, the discrepancy in the track
direction even at early times calls for an explanation.
Moreover, comparisons for a smaller scale vortex in
which the tangential velocity reduces to only 5 m s™!
at 300 km radius (the dashed profile in Fig. 1a) do not
compare so favorably. Indeed, there is a significant dis-
crepancy in the evolution of the vortex asymmetry be--
tween the analytical and numerical solutions, even after
only 3 hours of integration (Fig. 6), and also between
the tracks (Fig. 7). For example, according to the dis-
cussion in section 4 of SUD, the axis of the asymmetric
gyres should rotate cyclonically with time, but exam-
ination of the gyre structure in the numerical simula-
tion shows that, after a short period of time, this axis
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FiG. 2. Asymmetric vorticity (top panels) and streamfunction fields (bottom panels) at selected times: (a) 1 min, (b) 1 hour, (¢} 3 hours,
(d) 12 hours. Contour intervals for I'; are: 1 X 1085~ in (a), 5 X 1077 s in(b), 1 X 107%s7"in (c)and 2 X 107 s~! in (d). Coutour
intervals for ¥, are: 100 m2s~'in (a), 6 X 10° m?s~'in(b), | X 10*m2s~'in(c)and 5 X 10* m? s~ in (d).

retrogresses. At first sight this seems to imply a retro-
grade propagation of the wavenumber one asymmetry
as a type of centrifugal wave on the vortex core. Such
an effect would seem likely to be more pronounced for
a vortex that decays more rapidly with radius where
the radial gradient of relative vorticity is larger. How-
ever, a study .of wave propagation on a barotropic vor-
tex by Gent and McWilliams (1986) has shown that
while a wavenumber one mode is stable, it has zero
frequency; i.e., it does not retrogress relative to the vor-
tex. Nevertheless, it is conceivable that such a wave

could be forced as a result of vortex motion as suggested
by Carr and Williams (1989). We explore this idea in
the following section and show how the foregoing dis-
crepancies between the analytical and numerical the-
ories may be resolved.

3. Refinements to the theory

As a preliminary, it is insightful to consider the vor-
ticity equation governing small perturbations to a sta-
tionary symmetric vortex again with tangential velocity
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distribution ¥'(r), on a 8-plane. If the velocity pertur-
bation is u’ = (', v’) in cylindrical coordinates (r, 6),
the perturbation vorticity {' = (1/r)(3(rv')/dr — du'/
80) satisfies the equation

a vV a¢ a¢ '

— 4 — = '—= —BVcosh+ Bu'-j=0, (3.1
ot Ty ae TV gy FVcosEfuw-i=0, (30
where jis a unit vector in the northward direction and
¢ = r"'3(rV)/ar is the relative vorticity of the basic
vortex. An alternative form of (3.1) is

a Vay\, ., __,df
(a_t+7%)(§ +f)=—u gy Pwei 32)

It is illuminating to compare this with Eq. (2.3) re-
written in the form

(a—a[+u-V)(I‘ + /)

=—(U=¢)-Vi—(U—1¢)-V(T'+f), (3.3)

appropriate to a frame of reference moving with the
vortex (hence the addition of the term ¢+ V(I' + /) on
the right hand side). Clearly, if (3.2) is considered in
the frame reference moving with the vortex, T' + f can
be identified in the linear problem with ¢’ + f and (U
— ¢)-V with u'd/dr, etc. [note that u refers to the
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FIG. 3. Comparison of the analytically computed asymmetric vorticity and streamfunction fields (upper right and lower right) with those
for the corresponding numerical solutions at 24 hours. Only the inner part of the numerical domain, centered on the vortex center, is shown
(the calculations were carried out on a 2000 km X 2000 km domain). Contour intervals are 5 X 10~ s~! for I, and 10°m?s™ for ¥,.
The tropical cyclone symbol represents the vortex center.

symmetric vortex whereupon u-V =(¥/r)(8/96)]. A solution T, given in that section. The analysis is as
similar approach is contained in a recent study of vortex  follows.

motion by Willoughby (1988). Consistent with the Writing I' = T, + I';. and U = U, in (3.3) and
naive scale analysis of the preceding section the nu- neglecting the last term therein, we obtain using (2.4)

merical calculations suggest that the term —(U —¢)- V{  an equation to the asymmetric vorticity field T ,.:
is the dominant one on the right-hand side of Eq. (3.3)

and its contribution to the asymmetric vorticity dis- Ol + _
. . . u-Vvr,.=—(U, —¢)-V¢. 3.4
tribution I',. may be estimated using the zero order ot “ (Ua =) V¢ (34)
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The asymmetric flow U, is obtained from (2.10)

and ¢ from (2.12) and we can calculate the stream--

function ¥/, of the vortex-relative flow U, — ¢, from

\I”n = \I’a - \Ifc,
where
V. = r(V,cosf — U, sinf)
\4 ov
=r k) cosf + —= sinﬁ]. (3.5)
or |, or | _o
Then, using (2.8), (2.9), (2.11) and (3.5) we obtain
W = W(r, t)cosf + ¥5y(r, t)sinf, (3.6)
where
0
Vi, 1) = ¥, r[ ‘I’]  (n=1,2)
ar o

1 r p2
==r 1 == |$ulp, D)dp. (3.7)
2 Jo r
After a little algebra it follows using (2.10)~(2.12) and
(3.7) that ‘
—(U,—¢)Vi=X(r, t) costd + Xp(r, t) sinf, (3.8)

where

Xl(r, l) _lﬁx
Xa(r, t) T rodr

va(r, 1)

—w(r, t)]' (3.9)
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After a little algebra, outlined in Appendix A, it follows
that

Loc(r, 0,8) = {io(r, t) cosb + &o(r, t) sing,  (3.10)
where
$nc(rs 1) = J:Xn(ra t)de
1 d r 2
and
in { Q
m(r,p,t) = Sl—n{mx—)t}
_sin{Q(r)¢} —sin{Q(p)¢}
o -ap 0 O
1 - Q
m(r, p,t) = —C%;(—{r)—(it}
cos{Q(r)t} — cos{Qp)t}
) — 2p) (3.12b)

The integrals in (3.11) can be readily evaluated using
quadrature.

Figure 8 shows the pattern of relative streamlines at
24 hours for the larger vortex in Fig. 1 and Fig. 9a
shows the correction to the asymmetric vorticity field
at this time. The relative streamflow across the vortex
core is weak as corroborated by the numerical solution

T e —
[ AC ]

320 | N .
[ ]
- ]

240 |+ ]

€ : |

PRV

> A

lBOt ]
g0 | ]
-III|IIII|IIII|IIIIIIJII

q400 -320 -240 -80 0

x km

-160

F1G. 5. Comparison of the analytically calculated vortex track (de-
note by A) compared with that for the corresponding numerical so-
lution (denote by N). The track by AC is the analytically corrected
track referred to in §3.



15 AuGusT 1990

500 e
time =

(@

LA B L B e B I R B B B B O B

3 hours

300

P EEEEEEEEEN BN TR NENR

-300

LR 20 B B0 50 20 e 20 o o i o o e A O B L S L R SO LB

RN EEEE PR NN NS NN

-500 T NN TR ST TR TN S RNl RN TN R

-500 -300 -100 100 300 S00
x km

500 AR A A AL AR AALL AL AARERARRRS
time = 3 hours 1
(b)

300

TSR NN NS NN SRS

20 B B B 2 i 2 2 o g B B I B B B L L

_SUO st by e v Lo r by gl

=500 -300 -100 100 300 500
x km

F1G. 6. Comparison of (a) the numerically and (b) analytically
calculated vorticity asymmetries for the small vortex at 3 h.

(SUD, Fig. 8), but the radial gradient of symmetric
vorticity is large in this region. Since the latter gradient
changes sign at r = 255 km, the vorticity correction
shows two outer gyres, a cyclonic one to the northwest
and an anticyclonic one to the southeast. Each of these
is symmetric about an axis in the direction of the rel-
ative streamflow at large distances. Furthermore, their
sense of rotation implies a component of motion across
vortex center towards the north-northeast.

At inner radii, the tendency to form an inner gyre
with the opposite sense of rotation to the outer one is
opposed by the strong shear of the tangential wind and,
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FIG. 7. Legend as for Fig. 5 except for small vortex in Fig. 1.

as in the case of the basic asymmetry discussed in sec-
tion 2, the vorticity correction consists of alternate rings
of positive and negative values. The radial scale of these
rings decreases with time and their contribution to the
streamfunction asymmetry rapidly becomes small in
comparison to the outer gyres. The direction of the
streamflow across the vortex center associated with the
correction to the asymmetric vorticity field T',, is evi-
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FiG. 8. Relative streamfunction ¥/, for the large vortex at 24 hours
based on the zero order solution for ¥, and the vortex translation
velocity at this order. Contour interval is 2 X 10° m2s™!.
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FIG. 9. Pattern of asymmetric vorticity correction T, (a) for the
standard vortex case at 24 hours; (b) for the small vortex at 3 h.

dently of the right sense to explain the discrepancy in
the analytically computed vortex track. The vorticity
correction for the small vortex at 3 hours is shown in
Fig. 9b with the same contour interval as in Fig. 6.
Note that the correction is even more significant in this
case than in the standard vortex case at 24 hours.
The total vorticity asymmetries (I', + I'y.) show ex-
cellent agreement with those obtained from the full
numerical solution at least up to 24 hours (Fig. 10a,b).
In particular, in the case of the small vortex, the cor-
rected asymmetries show the subsequent retrograde
rotation of the gyre asymmetry as discussed in section
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2 (Fig. 10d). Note that the analytically calculated
asymmetric gyres for the small vortex continue to show
good agreement with the numerically computed ones
at 12 h (Figs. 10e,f).

Consideration of the corrected vorticity patterns in-
dicate why smaller vortices with the same radius of
maximum tangential wind speed and same maximum
tangential wind speed have a more northerly track than
larger ones. It is because the term —(U — ¢) - V{ makes
a proportionately larger contribution to the vortex
asymmetry for smaller vortices, leading to a greater
retrogression of the axis of the asymmetric gyres in
these cases.

As in the zero order analysis, we can calculate the
streamfunction correction corresponding with (3.10)
and, in particular, the velocity correction Ac to the
flow across the vortex center. In analogy with (2.12),
it follows that

av,.| 8v,,
Ac=[— 2 L ] (3.13)
o |, 9 |
where
ov,, 1f°°
e == (7, D)dr. 3.14
ar |,_, 2 o $nc(r, T)dr ( )

The corresponding track correction Ax = (Ax, Ay) is
then obtained by integrating (3.13) with respect to time
in analogy with (2.11). The result is

[Ax(t)] :
Ay(1)
-1 ZJwﬁ f’ __lf Yi(r,p, 1)
46[ 0 dr dr Op l r2 7Z(r>p’ t) dp’
(3.15)
where
sin{2, — Q,
Yi(r,p, ) = gz
(sin®,)/ 9, — (sin®,)/Q,
- .1
=5, . (3.16a)
1 — cosq,
y2(r,p, 1) = 0z
_ (1 —cos,)/Q, — (1 —cos,)/ Q) . (3.16b)
Q- Q,

with the notation that Q, = Q(r)¢and Q, = Q(p)¢. The
corrected tracks for the large and small vortices in Fig.
1 are shown in Figs. 5 and 7, respectively. The agree-
ment is now excellent both in speed and direction at
early times (at least 36 hours for the larger vortex and
12 hours for the smaller one) after which the analyti-
cally and numerically calculated tracks begin to diverge.
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In the case of the larger vortex, the analytically com-
puted track direction remains good, but the vortex
speed is overestimated. In the smaller vortex case, the
directions show a significant deviation also.

Figure 11 compares the streamfunction calculated
from the analytical theory for the standard vortex at
24 hours with that for the numerical calculation. The
former is obtained by adding the zero order stream-
function from (2.8) to the correction ¥, calculated
by applying (2.8) and (2.9) to Eq. (3.10). The latter
was calculated for a 4000 km X 4000 km domain and
normalized to have zero value at the vortex center to

enable a proper comparison to be made with the an-
alytical solution. As for the vorticity field, the agree-
ment is generally very good. In contrast to the analytical
solution, the streamlines for numerical solution show
a slight curvature on either side of the vortex center,
presumably associated with the contribution of other
wavenumbers to the vortex asymmetry (see below).
However, the mean flow direction across the vortex
center corresponds closely with that of the analytical
solution, showing that the analytic theory captures the
essentials of the vortex motion dynamics.

The ultimate breakdown of the analytical theory is
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presumably attributable to the linearization assumption
implicit in the assumption that advective changes in
vorticity occur following fluid parcels moving with the
tangential velocity of the basic vortex about the local
vortex center. As the vortex speed is at most a few
meters per second, the latter is a good approximation
within two or three hundred kilometers of the center
for the vortices studied, but it is not valid at large radii
where tangential speeds are comparable with, or even
smaller than the vortex speed. This is illustrated in the
case of the larger vortex in Fig. 12 which shows the
trajectories of selected particles relative to the vortex
center calculated from the full numerical solution. Ul-
timately, the vorticity changes experienced by particle
motions at radii where V(r) is not overwhelmingly
larger than the vortex speed contribute significantly to
the coherent part of the asymmetric vorticity field (see
SUD, §4). .

It is interesting to note that the breakdown of the
theory cannot be delayed by including the second term,
—(U — ¢)- VY, on the right hand side of Eq. (3.3). It
is straightforward to show that, when estimated using
the zero-order solution, this term projects partly on to
a symmetric component and partly on to a wavenum-
ber-two asymmetry (see Appendix B). The symmetric
component cannot induce a flow across the vortex
center, of course, and it can be shown that this is true
also of the wavenumber-two asymmetry. In a method
of partitioning where ‘“‘the vortex” is defined as the
symmetric component of the flow at any instant, as
used for example by Fiorino and Elsberry (1989), the
symmetric part of the term, — (U — ¢)- V£, would con-
tribute to a change in the vortex profile with time. In-

deed, in the present analysis, this is the only term that
contributes to such a change, since the azimuthal av-
erages of ¥/, and ¥, (=¥, cosd + ¥, sinf) are iden-
tically zero.

4. The “bogussing” problem

Tropical cyclones are generally in scale well below
the resolution of the conventional data observing net-
work and their presence may be missed entirely by a
straight forward objective analysis of the data. Accord-
ingly it may be necessary to insert a so-called “bogus
vortex” in the analysis in preparation for the initial-
ization of a forecast model. Ideally the bogus vortex
should correspond with the estimated size and intensity
of the cyclone. Moreover, one would wish that, when
assimilated into the model, the bogus vortex would
move initially at least with the observed speed and di-
rection of the cyclone. It is clear from the results of the
prototype problem that an initially symmetric bogus
vortex will develop its own asymmetries and that these
will influence its subsequent motion. The case of vor-
tices initialized in spatially varying environmental flows
is studied in Ulrich and Smith (1990). Therefore, it
would seem desirable to initialize a model with an
asymmetric vortex, chosen to ensure that the model
cyclone has the initial speed and direction of that ob-
served. In the absence of an environmental flow, one
could use the present analytical solution to calculate
an appropriate asymmetric vortex such that the vortex
velocity equals the observed speed and direction of the
cyclone. One would have to select (arbitrarily) a time
at which to do this and the effectiveness of the initial-
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ization would depend on the sensitivity of the forecast
to the time chosen. The method might be expected to
retain some skill if the environmental flow is weak. We
are investigating these problems currently and the re-
sults will be reported in due course. The important
question of correctly initializing vortices in environ-
mental flows with significant horizontal shear and in
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FIG. 12. Selected particle trajectories relative to the moving vortex
in the numerical calculation for the standard vortex. The trajectories
start along the x-axis. Thick dots indicate 6 hourly positions. Thin
dots mark circular paths at the initial radii of particles.

baroclinic models with vertical shear remains also to
be addressed.

5. Conclusion

The early motion of an initially symmetric barotro-
pic vortex on a beta plane and the vortex asymmetries
that accompany the motion can be accurately calcu-
lated using an essentially linear Lagrangian model in
which relative vorticity changes are computed for par-
ticles moving in circular orbits relative to the moving
vortex. The vortex motion is determined on the as-
sumption that the vortex center, defined as the point
of maximum relative vorticity, is advected by the
asymmetric streamflow across it. For tropical cyclone
scale vortices, the theory agrees closely with the results
of analogous numerical calculations for a period be-
tween one and two days. Thereafter, the analytical and
numerical model calculations steadily diverge, although
for larger scale vortices the track directions continue
to agree until at least 48 hours. The theory begins to
break down as relative vorticity changes in particles at
large distances from the vortex center begin to con-
tribute significantly to the asymmetric vorticity distri-
bution. Such particles have tangential velocities com-
parable with or less than the speed of vortex translation
and accordingly their motion relative to the moving
vortex deviates appreciably from a circular path as as-
sumed by the theory.
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APPENDIX A
Derivation of Eq. (3.11)
Using (3.8) and (3.9), Eq. (3.4) can be written as
dl,. 1d .
W: g‘[\Ifz(r t) cosf—Y'(r, t) sinf],

where d/dt denotes integration following a fluid parcel
moving in a circular path of radius r about the vortex
center with angular velocity Q(r). It follows that

idg
“rdr

J: [W5(r, t') cosO(t')
— Wi(r, t') sind(¢')]dt’,

where 0(¢') = 0 — Q(r)(t — t'). Using (3.7), this becomes

neig b L)

X [&2(p, t') cosd(t') — {1 (p, t') sinf(¢')]dpat’,

and this reduces further on substitution for ¢{, from
(2.7) and the above expression for (') giving

d 2
Tp = — B§ p(l—%)

dr
X fo [cos{8 — Qr)(t —1')}

—cos{f — Qr)(t—1t')— Qp)t'}1dt'dp.

Equation (3.11) follows on integration with respect
tot'.

APPENDIX B
Estimation of the Term —(U — ¢)- Vf in Eq. (3.3)

Using (3.6) and noting that (d/dx) = cos8(d/ar)
—sinf(1/r)(9/98),
—(Us=¢):Vf = _B(B\I/ ) = —ﬁ[coszb?%r'l

\ ov, v
— sin20 — + cosf sint9(—2 - —2)}
r or r
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Substituting expressions for ¥/, and their derivatives
from (3.7) gives after a little algebra:

—(Ug—¢)-Vf

=_ % 5“) G(p, t)qp X pP*6(p, Hydp

sin2f
+ 2

fo p*6H(p, t)dp]-

The contribution to this term to the vorticity asym-
metry correction through (3.3) may be readily calcu-
lated by the procedure outlined in Appendix A.
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