Parallel Computations in Problems of Climate Modeling*

V. Gloukhov?

#Research Computing Center, Moscow State University,
NIVC MGU, Vorobjovi Gory, 119992 Moscow, Russia

The paper is focused on different approaches to parallel implementation of climate
models on cluster multiprocessors. We present results of applying either MPI or OpenMP
to the model components: atmospheric and oceanic blocks. A library of communication
routines was developed for the distributed memory approach. It carries out the basic
communication operations, such as boundary exchanges and transpositions of decomposed
data. The library has quite general interface that makes it useful for parallelization of a
wide range of scientific applications calculated on structured grids. In particular, we have
examined it on INM AGCM as well as on a set of atmospheric benchmarks which integrate
the equations of hydrothermodynamics of atmosphere under the hydrostatic assumption.
An OpenMP implementation of the INM Ocean model has been undertaken and tested
on few shared memory systems.

INTRODUCTION

The generally accepted definition of climate is the average course or condition of weather
at a place usually over period of years as exhibited by temperature, wind velocity, precip-
itation, etc. Or more rigorously, it is a set of subsequent states of atmosphere, ocean and
criosphere, quantified by state variables. Since no direct physical experiment on climate
system is possible, scientists use state-of-the-art numerical models to access the role of
anthropogenic factors in its formation and changes. Long periods of integration, decades
or even centuries, make the problem complex to be processed by a uniprocessor PC or
workstation, necessitating the usage of parallel computers, in particular those of cluster
architecture, comprised of SMP nodes interconnected with fast network. The concept
of parallel processing is quite suitable for climate models because they can be split up
into components, for example, into the atmospheric and ocean parts, which interact each
other from time to time, through exchange of energy and substance, and are independent
in-between. Furthermore, the components, also can be calculated concurrently, provid-
ing a substantial degree of parallelism exploitable through shared or distributed memory
multitasking.

This paper aims to show few of our experiences in trying different parallelization strate-
gies for an Atmospheric and an Ocean model developed in the Institute of Numerical
Mathematics of the Russian Academy of Sciences. We highlight some technical details of
these approaches that could be interesting to application developers, not only from the

*Supported by the INTAS projects 00-189, 01-2132 and RFBR projects 01-05-64150a, 03-05-64358a.

area of climate studies but from other fields also. While an application of distributed
memory paradigm to the full INM atmospheric general circulation model was described
in [1], here we stress only on distributed memory implementation of its dynamical core
responsible for integration of the governing equations. And the OpenMP paradigm was
tested on the INM Ocean model that constitutes the ocean component of a coupled
model [10].

We kept the following structure of the presentation. In section 1, a library of communi-
cation routines (communication kernel) is described that performs the basic communica-
tion operations on distributed memory: boundary exchanges and transpositions. Written
in C the library is intermediate between MPI and application. The communicated data
may have quite general format which makes it suitable for parallelization of a wide range
of both C and Fortran scientific applications formulated on structured grids.

In particular, the library are invoked by the atmospheric dynamical core to maintain 2D
data partitioning over the processors. Extended by the idealized Held-Suarez forcing [2],
the dynamics can be used for benchmarking purposes alone. It allows to switch between
the explicit and semi-implicit time stepping scheme, as well as between direct and iter-
ative solvers for the Helmholtz equation arising in the semi-implicit scheme, giving an
opportunity for direct intercomparison of the methods at different grid resolutions. Sec-
tion 2 contains an example of such benchmarking carried out on MBC1000M computing
system installed at the Joint Supercomputing Center, in Moscow.

Though MPI is quite common programming environment on clusters, other techniques
exist facilitating parallelization. In section 3, we present the results of an OpenMP par-
allelization of the INM Ocean model, which requires less programming efforts than the
distributed memory approach, but scalable up to a single SMP node on most systems.

1. COMMUNICATION KERNEL

If a climate model runs on a distributed memory machine and domain decomposition
technique is used within its components, each processor computes only particular sub-
domain of either the atmosphere or ocean. Interactions between the model components
and dependencies at the boundaries of subdomains urge the processors to interchange
messages. These communications have to be realized as a set of routines.

We are about to characterize a library of such routines, called communication kernel,
which is based on MPI. This library was designed for the communications performed
within the model components for it has no interpolation features. Moreover, the com-
municated data are assumed to be stored in multidimensional arrays which dimensions
correspond to different spatial dimensions or prognostic variables. Therefore, the library
is intended only for the structured grids and rectangular domains which should be de-
composed along one ore more spatial dimensions. It performs two major kinds of com-
munications of distributed data: boundary exchanges and transpositions.

Boundary exchange is a local communication, in the sense that every processor ex-
changes values adjacent to the boundaries of his subdomain only with the neighbors,
while the transposition is global, or an all-to-all communication, such that each proces-
sor within a group interacts with each. For example, boundary exchanges are inevitable,
when derivatives are evaluated by the method of finite differences. But if an operation, for

instance integral summation, requires all the data along a decomposed dimension and is

independent along another, which is not partitioned, the data can be redistributed along

the second dimension, then the operation is evaluated locally within each processor, and

in the end the original distribution is restored. That is exactly what we call transposition.
The boundary exchange routine has the following interface

int P_BExchange(void *arr, int nd_array, int *stride,
int *blklen, int nd_procgrid, int n_edges,
int *cart2arr, int overlapl[][2],
MPI_Datatype datatype, MPI_Comm comm)

CALL P_BEXCHANGE (ARR, ND_ARRAY, STRIDE, BLKLEN, ND_PROCGRID,
N_EDGES, CART2ARR, OVERLAP, DATATYPE, COMM, IERR)

INTEGER ND_ARRAY, ND_PROCGRIG, N_EDGES, DATATYPE, COMM, IERR
INTEGER STRIDE(ND_ARRAY), BLKLEN(ND_ARRAY), CART2ARR(ND_PROCGRID)
INTEGER OVERLAP(2, ND_PROCGRID)

where COMM MPI communicator defining a Cartesian topology, ARR pointer to the first ele-
ment of local subdomain, ND_ARRAY number of dimensions of array ARR, ND_PROCGRID num-
ber of dimensions of the Cartesian topology, CART2ARR array mapping dimensions of the
Cartesian topology into dimensions of the array ARR, STRIDE dimensions of array ARR,
BLKLEN dimensions of the subdomain, OVERLAP, N_EDGES width and adjacency degree of
boundaries to be communicated, respectively, DATATYPE MPI data type of array elements,
IERR error code.

Figure 1 depicts a local to some processor portion of data, decomposed along directions
diry and dire, with its halo regions (boundaries). We assume, by definition, that the
boundaries BY, B}, BY and B} has the first degree of adjacency, while B?:g , B?:Ql , B};S
and B%; the second (the last four will be exchanged in diagonal directions).

The transposition routine has the following interface

int P_Transpose (ndims, void *arr_source, int dim_source,
int *1blks_source, void *arr_dest,
int dim_dest, int *1blks_dest, int *stride,
int *blklen, int *overlap, MPI_Datatype datatype,
MPI_Comm comm, int period)

CALL P_TRANSPOSE (NDIMS, ARR_SOURCE, DIM_SOURCE, LBLKS_SOURCE,
ARR_DEST, DIM_DEST, LBLKS_DEST, STRIDE, BLKLEN, OVERLAP,
DATATYPE, COMM, PERIOD, IERR)

INTEGER NDIMS, DIM_SOURCE, DIM_DEST, DATATYPE, COMM, PERIOD

INTEGER IERR, LBLKS_SOURCE(*), LBLKS_DEST(*)

INTEGER STRIDE(NDIMS), BLKLEN(NDIMS)

where ARR_SOURCE, ARR_DEST pointers to local subdomains within the arrays containing
data in original and transposed distribution, respectively, NDIMS number of dimensions of
both arrays ARR_SOURCE and ARR_DEST, DIM_SQURCE and DIM DEST distributed dimensions

0 1
W, blk dir,, W,
A
10 1 11 1
12 B: 2| | W

dir,
A

Figure 1. The local subdomain and its halo regions for a 2D data partitioning over the
Processors.

of the comminicated arrays, respectively, LBLKS_SOURCE and LBLKS DEST distribution of
dimensions DIM_SOURCE and DIM DEST, respectively, STRIDE dimensions of the commu-
nicated arrays, BLKLEN size of local subdomains, COMM MPI communicator determining
the processors participating in transposition, DATATYPE MPI data type of the communi-
cated arrays, IERR error code. Parameters OVERLAP and PERIOD define the interprocessor
overlapping of redistributed data and periodicity of dimension DIM_DEST. There usage is
equiualent to a transposition without overlapping followed by a boundary exchange in the
direction of dimension DIM_DEST.

Figure 2 represents data in array ARR_SOURCE decomposed in direction dir® (original dis-
tribution), while figure 3 shows the same data in array ARR_DEST redistributed in direction
dir? (transposed layout).

To transfer data asynchronously the kernel routines call MPI non blocking send-receive
functions MPI_Isend and MPI_Irecv [4], while to form the blocks of data to be transfered
they invoke the MPI_Type_vector function.

It is worth to mention, that our kernel functionally is similar to the Nearest Neighbor
Tool (NNT) developed by Rodriguez, Hart, and Henderson [3].

2. EULERIAN DYNAMICAL CORE

Robustness of the communication kernel described above has been tested on the dy-
namical core, used in INM AGCM [5], which integrates a system of primitive equations

S
2

Figure 2. Data distribution before transposition.

of hydrothermodynamics of the atmosphere in the Boussinesq approximation under the
hydrostatic assumption [6]. Written in vertical o-coordinate, the system is discretized on
a staggered Arakawa C-grid [7]. Our realization allows user to choose between explicit or
semi-implicit time integration scheme. Since most calculations performed by the AGCM
are very dependent in the vertical direction, we applied checkerboard partitioning, dis-
tributing data along both longitude and latitude, over two-dimensional Cartesian topology
of processors. Evaluation of the explicit tendencies at a grid point requires the values of
prognostic variables from some neighborhood of that point, necessitating a boundary ex-
change. Also a transposition is required to perform Fourier filtering of the fields near the
poles.

The semi-implicit scheme increases time steps 4-5 times, but leads to a discrete two-
dimensional Helmholtz-like equation that have to be solved on every vertical level each
time step. The matrix of the arising linear system is structured and can be represented
as [— qk[Di Q My + (D,M,) ® I,], where g are height dependent coefficients, I is a
unit matrix, D, is diagonal, M, tridiagonal, and M) cyclic tridiagonal.

There are few fast direct methods of solving the system with structured matrix, like we
have, which take advantage of the matrix structure. We exploit a direct method involving
the fast Fourier transform (FFT) along longitude and tridiagonal Gaussian eliminations
along latitude. However, both longitudes and latitudes are distributed, and the alternative
here is whether to use distributed algorithms of FFT and tridiagonal Gaussian elimination
or transpose the data twice, first, in longitude-latitude plane and then, after completion of
FFTs, in latitude-longitude plane to perform Gaussian sweeps. Our experience convinces

dir s
/

Figure 3. Transposed data.

us that the second approach is more efficient unless the length of transformed vectors is
not big. Thereafter, we incorporated double transposition in direct Helmholtz equation
solver.

To apply iterative solver we made use of the PIM 2.2 package [8], which we found to
be useful. It includes a number of iterative methods for symmetric and nonsymmetric
systems. As our matrix is nonsymmetric, we inclined to the Bi-CGSTAB method with
the stopping criteria ||rg|| < €||b||, where 1 is the residual, b is the right hand side, and
e = 1072, The only thing supplied by us to PIM was a matrix-vector multiplication
subroutine, that invokes the boundary exchange communication routine.

Table 1 contains an example of benchmarking performed with the Eulerian dynamical
core on MBC1000M computing system. One can see, that the semi-implicit scheme with
the direct solver more scalable than that with the iterative solver and faster than the
explicite scheme, at given resolution.

3. OPENMP IMPLEMENTATION OF THE INM OCEAN MODEL

The INM Ocean model [9] is based essentially on the same governing equations as the
atmospheric model, with the difference that the salinity is incorporated as a prognostic
variable. As a component of the coupled model [10] it performs about 10% of overall
computations. The rigid lid condition at the surface allows to introduce the barotropic
stream function. The numerical implementation makes use of splitting into physical pro-
cesses, as well as along spatial coordinates, facilitating application of the efficient implicit

Table 1

CPU time (above) and speed-up (below) of one day forecast (in sec) of the Eulerian
dynamical core at resolution 256 x 128 x 16 on a given number of processors of MBC1000M
computing system. EXPL explicit scheme, GAUSPH semi-implicit scheme with the direct
solver, ITER semi-implicit scheme with the iterative solver.

of procs 1 2 4 8 16 32 64 128 256
EXPL 602. 367. 190. 103. 54. 43. 24. 20. 18.
1.0 16 32 58 11.0 139 254 30.6 33.5
GAUSPH 233. 156. 100. 69. 53. 34. 17. 11. 10.
1.0 15 23 34 44 69 138 20.7 234
ITER 306. 178. 99. 53. 35. 35. 31. 31. 32
1.0 1.7 31 58 85 86 97 99 95

algorithms. Introduction of the relative depth coordinate makes the computational do-
main cylindrical. Though the horizontal grid is uniform in spherical coordinates and fields
are stored in multidimensional arrays, which dimensions corresponding to spatial coordi-
nates, only wet points are computed and the processed domain has rather complex form
in horizontal plane.

The shared memory approach is attractive, mainly, because it does not involve such
profound restructuring of code, as MPI does. Secondly, it is suitable for the Ocean model,
because the dynamic scheduling, if enabled, yields good load balancing even for an ugly
domain.

The model parallelization was accomplished by supplying the PARALLEL DO directive
to major loops. Red-black ordering of unknowns was introduced in the SOR method
that calculates the barotropic stream function. Ultimately, speedup 2.6 was reached
on a 4-processor Itanium II system (Table 2). A distributed memory version of the
model, obtained by A.S. Rusakov [11] outperforms the OpenMP version. On 8 CPUs of
MBC1000M it revealed speed-up of 4.9 which, however, was estimated without writing
some output files.

Table 2
CPU time of the OpenMP parallel version of the INM Ocean model one year runs.
of CPUs 1 2 4 8

IBM Regatta, p670 16m47s 11m28s 8m39s 7ml6s
Intel Itanium II 15m46s 9m46s 5mb8s
Sun UltraSparc I~ 1h38m24s 1h5m48s 48m48s

ACKNOWLEDGMENTS

We would like to thank the Joint Supercomputer Center for providing there comput-
ing facilities which include the first Russian Teraflop machine MBC1000M. Also support

of Russian-Indian Centre for Advanced Computing Research is appreciated. This work
would not be possible without assistance of E.M. Volodin, N.A. Diansky, and M.A. Tol-
stykh, all from INM RAS.

REFERENCES

1.

10.

11.

V. Gloukhov, Parallel implementation of the INM atmospheric general circulation
model on distributed memory multiprocessors, Lecture Notes in Computer Sci-
ence 2329 (2002) 753-762.

[LM. Held and M.J. Suarez, A proposal for the intercomparison of the dynamical
cores of atmospheric general circulation models, Bull. Am. Meteorol. Soc. 73 (1994)
1825-1830.

B. Rodriguez, L. Hart, and T. Henderson, Parallelizing operational weather forecast
models for portable and fast execution, Journal of Parallel and Distributed Computing
37 (1966) 159-177.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference, The MIT Press, Cambridge, MA, 1998

V.A. Alexeev, E.M. Volodin, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov, Simulation
of the present-day climate using the INM RAS atmospheric model. The description
of the model A5421 (1997 version) and the results of experiments on AMIP II pro-
gram. Institute of Numerical Mathematics RAS, Moscow (1998) (reg. VINITI 03.07.98
No. 2086-B98)

G.I. Marchuk, V.P. Dymnikov, V.B. Zalesny, V.N. Lykossov, V.Ya. Galin, Mathemat-
ical Modeling of the Atmosphere and Ocean, Gidrometeoizdat , Leningrad, 1984 (in
Russian)

A. Arakawa, V.R. Lamb, Computational design of the basic dynamical processes of
the UCLA general circulation model, Methods Comput. Phys. 17 (1977) 173-265.
R.D. Cunha and T. Hopkins, PIM 2.2 The parallel iterative methods packages for
systems of linear equations. User’s guide. Internal Report 2-94 of the Computing
Laboratory, UKC.

N.A. Diansky, A.V. Bagno, and V.B. Zalesny, Sigma model of global ocean circulation
and its sensitivity to variations in wind stress, Izvestiya, Atmospheric and Oceanic
Physics, 38 No. 4 (2002).

N.A. Diansky, E.M. Volodin, Reproducing the present day climate using a cou-
pled atmosphere-ocean general circulation model. Izvestia, Atmospheric and oceanic
physics 38 No. 6 (2002).

A.S. Rusakov, N.A. Diansky, Parallel ocean general circulation model for distributed
memory computer systems, Parallel CFD 2003, Book of abstracts.

